18.152 PROBLEM SET 3 due April 1st 9:30 am

You can collaborate with other students when working on problems. However, you should write the solutions using your own words and thought.

Problem 1. Suppose that a smooth function $u : \mathbb{R}^3 \to \mathbb{R}$ satisfies $\Delta u \ge 6$. Show that given R > 0 the following holds.

$$u(\vec{0}) \le -\frac{3}{5}R^2 + \frac{3}{4\pi R^3} \int_{B_R(\vec{0})} u(\vec{y}) d\vec{y}.$$

Hint: $\Delta |\vec{x}|^2 = 6.$

Problem 2. Let $\Omega = B_1(0) \subset \mathbb{R}^2$. Suppose that a smooth function $u : \overline{\Omega} \to \mathbb{R}$ satisfies

$$\int_{\Omega} 2\left|\nabla u \cdot \frac{(1,1)}{\sqrt{2}}\right|^2 + \left|\nabla u \cdot \frac{(1,-1)}{\sqrt{2}}\right|^2 d\vec{x} \le \int_{\Omega} 2\left|\nabla v \cdot \frac{(1,1)}{\sqrt{2}}\right|^2 + \left|\nabla v \cdot \frac{(1,-1)}{\sqrt{2}}\right|^2 d\vec{x},$$

for any smooth function $v : \overline{\Omega} \to \mathbb{R}$ such that u = v holds on $\partial\Omega$. Show that $0 = 3u_{11} + 2u_{12} + 3u_{22}$ holds in $\overline{\Omega}$.

Hint: Consider $\hat{u}(x_1, x_2) = u\left(\frac{x_1 + x_2}{\sqrt{2}}, \frac{x_1 - x_2}{\sqrt{2}}\right).$

Problem 3. Let a smooth function $u : \mathbb{R}^2 \setminus B_1(0) \to \mathbb{R}$ be harmonic. Find all solutions $u(r \cos \theta, r \sin \theta)$ satisfying

$$u(\cos\theta,\sin\theta) = \cos(2\theta),$$
 $\lim_{r \to +\infty} \frac{1}{r}u(r\cos\theta,r\sin\theta) = 0.$

Problem 4. Show that the Green function to a smooth bounded domain Ω is symmetric. Namely,

$$G(x, y) = G(y, x).$$

Hint: Given $x \neq y$, choose $\epsilon < |x - y|$. Next, define u(z) = G(x, z) and v(z) = G(y, z), and apply the Green's identity over the domain $\Omega \setminus (B_{\epsilon}(x) \cup B_{\epsilon}(y))$. By passing $\epsilon \to 0$, show u(y) = v(x).